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We have measured the response of shear stress to ac electric fields under steady shear flow in the droplet-
dispersed phase of an immiscible polymer blend. A characteristic mode was found under steady shear flow, the
relaxation frequency of which increased with increasing the shear rate. In the frequency dispersion, a scaling
relation derived from dimensional analysis was confirmed to hold. The origin of the mode was investigated on
the basis of the Maffettone-Minale �MM� model, in which the droplet shape is described by a second-rank
tensor. The frequency dispersion of the response was also calculated using a modified MM model.
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I. INTRODUCTION

Frequently, immiscible liquid blends �emulsions� show a
droplet-dispersed phase. The spherical droplets are easily de-
formed to ellipsoidal ones by small external fields, and they
relax back to the spheres by interfacial tension after removal
of the fields. In droplet-dispersed phases, the rheological
properties strongly depend on the droplet shape and size.
Therefore, they exhibit complicated rheological responses to
external fields. When the field is a shear stress, the response
is characterized by the complex modulus. In oscillatory mea-
surements, a characteristic relaxation appears at low frequen-
cies in the storage modulus due to the interfacial tension
�1–4�. The relaxation was theoretically investigated by
Palierne and an excellent agreement was obtained with the
experiments �2,4�.

Viscoelastic measurements are usually made at equilib-
rium with applying a small oscillating shear flow as a pertur-
bation. Recently, on the other hand, oscillation measurements
under steady shear flow have been performed �5,6�. Under
steady shear flow, spherical droplets are elongated to change
into ellipsoidal ones. Superimposition of a small oscillating
shear flow as a perturbation causes the deformation and re-
orientation of ellipsoidal droplets, which can be detected
through the stress change. In the measurements, it was ob-
served that the storage modulus becomes negative under
steady shear flow �6�. The result was analyzed on the basis of
the Maffettone-Minale �MM� �7�, which was confirmed to be
valid for ordinary oscillation measurements �8�. Here, it
should be emphasized that the system is not at equilibrium
but at steady state. From this point of view, the superposition
measurements will become a useful method to investigate
the fluctuations at nonequilibrium steady state, which has
interesting features �5,6,9–12�.

When two immiscible liquids have a mismatch of electri-
cal properties, such as permittivity and conductivity, the
droplets can respond to electric fields. In some blends, it was
observed that the droplets are elongated along the electric
field �13,14�. The response is dependent on the electrical
properties and the frequency for ac electric fields, which was
investigated in detail by Torza et al. �13� Also under steady

shear flow, the deformation and reorientation of ellipsoidal
droplets may be induced by application of electric fields,
which can be detected through the stress change. This sug-
gests that the fluctuations at steady state can be measured by
applying an oscillating electric field as well as the shear flow
used in the superposition measurement.

In this paper, we measured the shear stress response of an
immiscible polymer blend to ac electric fields under steady
shear flow. First, the results are discussed on the basis of a
scaling relation derived from dimensional analysis. Then, the
normal modes of droplet deformation under steady shear
flow are investigated to clarify a feature characteristic to our
nonequilibrium steady system in terms of the MM model.
The frequency dependence of the shear stress is also calcu-
lated using the MM model with an additional term related to
electrical stress.

II. EXPERIMENT

A liquid-crystalline polymer �LCP� and a polydimethylsi-
loxane �DMS� were used as fluids. The LCP was synthesized
according to the method of Ref. �15�. The DMS �KF96H-
10000� was purchased from Shin-Etsu Chemical �Tokyo, Ja-
pan�. All the experiments were done at 25 °C, where the
LCP was in the isotropic phase. It should be noted that elec-
trorheological effect is not directly related to the orienta-
tional change in mesogens, which play a role to enhance
the dielectric permittivity. The viscosities, relative dielectric
constants, and conductivities of the LCP and DMS are 19.5
Pa s, 10.0 Pa s, 15.2, 2.8, 1.0�10−8 �−1 m−1, less
10−12 �−1 m−1, respectively. The viscosities were measured
by a rheometer �Physica MCR300, Anton Paar� and the rela-
tive dielectric constants and conductivities by a dynamic ion
density measurement system �MTR1, Toyo corporation�. We
prepared a blend of LCP:DMS=1:5 in weight. This mixture
was prepared by dissolving them in tetrahydrofuran followed
by evaporation of the solvent under vacuum. The blend was
sandwiched between a bottom glass plate with an indium-tin-
oxide-coated electrode and a rotating metal disk of the rhe-
ometer. As previously described �16,17�, measurements were
carried out with the parallel-plate rotational rheometer. A
schematic picture of the system is shown in Fig. 1�a�. The
diameter of the rotating plate and the gap between the two
parallel plates were 35 and 0.2 mm, respectively. Since we*orihara@eng.hokudai.ac.jp
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used a parallel-plate rotational viscometer and the shear rate
depends on its position, the shear rate was defined as the one
at the periphery of the upper disk. The shear stress at the
edge of the top plate was calculated from the torque by as-
suming that the fluid is Newtonian, though it is a crude ap-
proximation in our fluids. Figure 1�b� shows the relation be-
tween the flow direction, the velocity gradient, and the
electric field. Electric fields were applied to the blend by
using a synthesizer �Model 1940, NF Electric Instruments�
and a high-voltage amplifier �Model 609C-6, Trek�.

III. RESULTS AND DISCUSSION

Dynamics of the deformed droplets under steady shear
flow was investigated by the application of an ac electric
field. When an ac electric field with an amplitude E0 and an
angular frequency �, E=E0 cos �t, is applied, the shear
stress may be written as

��t� = �0 + �2,0��� + Re��2,2���ei2�t� , �1�

where �0 is the shear stress without electric field. Note that
the stress is independent of the polarity of the electric field
because the fluid is nonpolar and, therefore, the 2� response
appears and �2,0��� and �2,2��� should be proportional to
the square of E0 for a small E0. Figure 2 shows the depen-
dence of ��2,2���� on the square of E0 at �̇=20 s−1 and �
=1.38 rad s−1. All the measurements were made in the range
that the proportionality holds. Figure 3 shows the frequency
dependences of the real part �2,2� and the imaginary part �2,2�
of �2,2=�2,2� − i�2,2� measured with a steady shear flow of
20 s−1. We have a characteristic frequency dispersion differ-
ent from the Debye-type relaxation. Especially, the real part

becomes negative. However, it should be noted that the nega-
tive part depends on the shear rate, as shown later. Before
investigating the details of the dispersion, we will discuss the
scaling property of �2,2���. Scaling properties of blends have
already been investigated under a constant and step electric
field �18,19�.

As has been mentioned, �2,2��� should be proportional to
the square of E0. Taking this into account and applying di-
mensional analysis, we obtain

�2,2��� = �1E0
2f��/�̇,�1/�2,�1/�2,	1/	2,�
c,�� , �2�

with �19�


c =
�1 + 2�2

	1 + 2	2
, �3�

where �1 and �2 are the viscosities of the droplet and matrix
phases, and �1 and �2 are the dielectric constants, 	1 and 	2
are the conductivities, and � is the volume fraction, respec-
tively. One might think that the droplet size R should also be
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FIG. 1. �a� Schematic illustration of the system used in the mea-
surement and �b� the flow direction and electric field in the system.
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FIG. 2. �Color online� Dependence of ��2,2���� on the squared
amplitude of ac electric field E0
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FIG. 3. �Color online� Frequency dependences of the real part
�2,2� and the imaginary �2,2� of �2,2���=�2,2� − i�2,2� measured under
a steady shear flow of 20 s−1 and an ac electric field of E0

=0.90 kV mm−1.
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included, which is not a parameter given externally but de-
termined by the kinetics of the system from the shear rate,
viscosities, and interfacial tension � in the steady state �20�.
Interestingly, however, there appears no interfacial tension in
Eq. �2�. This is because one can construct neither quantity
with unit of stress nor dimensionless quantity including �. 
c
in Eq. �3� is the relaxation time of charge in a droplet. For
�
c

−1, the charge relaxation occurs, while for ��
c
−1, it

cannot do. Therefore, in general, the deformation of droplets
becomes small at frequencies higher than 
c

−1. On the other
hand, the deformed shape �oblate or prolate� also depends on
the electrical properties, the frequency of the applied field,
and the viscosities �13�. In our blend, droplets are elongated
along the applied field to become prolate. At angular fre-
quencies far from �c=
c

−1, �2,2��� in Eq. �2� may be inde-
pendent of � through �
 but dependent on � through � / �̇.
This indicates that the plot of �2,2��� /E0

2 against � / �̇ be-
comes a universal curve for ��c or ���c. In our blend

c�0.02 s, that is, �c�50 rad s−1. In Fig. 3, therefore, we
may apply this scaling relation for ��50 rad s−1.

Here, we should mention that in the parallel-plate rheom-
eter, the shear rate depends on the position; in the above
scaling relation, it was assumed to be constant. However, it
can be shown that the scaling relation is still valid in our case
as well. For the parallel-plate rheometer, we usually define
the shear rate as the one at the edge of the rotating disk and
the shear stress there is calculated from the measured torque
by assuming that the fluid is Newtonian. It is easily shown
that the shear stress thus defined �2,2

�p� obeys the following
relation similar to Eq. �2�:

�2,2
�p� = �1E0

2F��/�̇p,�1/�2,�1/�2,	1/	2,�
c� , �4�

with

F�x,�1/�2,�1/�2,	1/	2,�
�

� 4x3�
0

x−1

p2f�p−1,�1/�2,�1/�2,	1/	2,�
c�dp , �5�

where �̇p is the shear rate at the edge. For simplicity, we will
omit the subscript “p” hereafter.

Figure 4 shows a plot of �2,2��� /�1E0
2 vs � / �̇ for differ-

ent �̇, where E0 was set for each �̇ so that a dimensionless
number Mn, which is similar to the Mason number �21�,

Mn = �1�̇/�1E0
2, �6�

is constant. This ensures that the ratio �2,2��� /�0 is indepen-
dent of the set of E0 and �̇ thus determined, which was
necessary to have an enough precision for �2,2��� in each
measurement. All the measurements were carried out under
the condition of Mn=3.2. As is seen from Fig. 4, all the data
almost fall on a universal curve, though they are scattered.
However, there is a small systematic deviation: the position
of the minimum in the real part moves from � / �̇�0.2 �at
�̇=60 s−1� to higher frequencies, and eventually the mini-
mum almost vanishes for �̇=5 s−1. The reason for the devia-
tion is not yet clarified at present.

Next, we turn our attention to the dispersion in Fig. 3,
which has the following characteristics: it is not simple re-
laxation �Debye type� and the real part becomes negative at
high frequencies for large shear rates, i.e., it has an oscilla-
tory character. We discuss it on the basis of the MM model
�7�. Under a constant shear flow, droplets are elongated to
become ellipsoidal. In addition, when subjected to an ac
electric field with an angular frequency �, the ellipsoid may
rotate around the vorticity axis and may expand and shrink in
the directions of all the semiaxes, preserving the droplet vol-
ume. These changes modify the shear stress with the angular
frequency 2�. The response of droplet to the electric field
can be clarified by investigating the normal modes in the
steady state. Hereafter, we will briefly review the MM
model.

In the MM model, it is assumed that the droplet is always
ellipsoidal and the shape is described in terms of a symmet-
ric second-rank tensor S with eigenvalues representing the
squared semiaxes of the ellipsoid. The temporal evolution of
S is given as

dS

dt
− � · S + S · � = −

f1



�S − g�S�I� + f2�A · S + S · A� ,

�7�

with


 = �2R/� , �8�

where 
 is a characteristic time, I is the second-rank unit
tensor, A and � are the symmetrical and antisymmetrical
parts of the velocity gradient tensor �v,

A =
1

2
��v + �vT� , �9�

� =
1

2
��v- � vT� . �10�

The dimensionless coefficients f1 and f2 are given as

f1 =
40�� + 1�

�2� + 3��19� + 16�
, �11�
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FIG. 4. �Color online� Plot of �2,2��� /�1E0
2 vs � / �̇ for �̇=5, 10,

20, 40, and 60 s−1, where E0 was set for each �̇ so that Mn=3.2.
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f2 =
5

2� + 3
, �12�

where �=�1 /�2 is the viscosity ratio. The function g�S� is
introduced to preserve the droplet volume and is given as

g�S� = 3
I3�S�
I2�S�

, �13�

where I3�S� is the third invariant of S, i.e., its determinant,
and I2�S� is the second invariant defined as

I2�S� =
1

2
�	Tr S
2 − Tr S2� . �14�

For a simple shear flow, A and � become

A =
1

2�0 �̇ 0

�̇ 0 0

0 0 0
�, � =

1

2� 0 �̇ 0

− �̇ 0 0

0 0 0
� . �15�

In the steady state of dS /dt=0 in Eq. �7�, let L, B, and W be
the three semiaxes of the ellipsoid, where L and B are in the
x1−x2 shear plane �L�B� and W along the vorticity �x3
axis�, and define the orientation angle � between the x1 and L
axes. From Eq. �7�, these quantities are given �7� as

tan 2� =
f1

�̇

, �16�

W2 = 1 −
f2

2

1 + f1
2/��̇
�2�1/3

R2, �17�

L2 =
f1

f1 − f2�̇
 sin 2�
W2, �18�

B2 =
f1

f1 + f2�̇
 sin 2�
W2, �19�

where R is the radius without shear flow.

Now, we calculate the normal mode. We can write a S�
tensor including small fluctuations from the steady state in
the x1�-x2�-x3 coordinate system with the semiaxes of the el-
lipsoid �Fig. 5�,

S� = �L2 0 0

0 B2 0

0 0 W2� + � �S1 �S12 �S13

�S12 �S2 �S23

�S13 �S23 �S3
� . �20�

From Eq. �7�, we obtain the evolution equations for the fluc-
tuations,

d

dt�
�S1

�S2

�S3

�S12

� = M1�
�S1

�S2

�S3

�S12

� , �21�

d

dt
��S13

�S23
� = M2��S13

�S23
� �22�

with

M1 =�
f1/
�J1 − 1� + f2�̇ sin 2� f1/
J2 f1/
J3 �f2 cos 2� + 1��̇

f1/
J1 f1/
�J2 − 1� − f2�̇ sin 2� f1/
J3 �f2 cos 2� − 1��̇
f1/
J1 f1/
J2 f1/
�J3 − 1� 0

�f2 cos 2� − 1��̇/2 �f2 cos 2� + 1��̇/2 0 − f1/

� , �23�

M2 = �− f1/
 + f2�̇ sin 2�/2 �f2 cos 2� + 1��̇/2
�f2 cos 2� − 1��̇/2 − f1/
 − f2�̇ sin 2�/2

� ,

�24�

where

J1 =
W4

3R6 	2B2 − W2
 , �25�

J2 =
W4

3R6 	2L2 − W2
 , �26�

x2
E

x1

X’2
X’1

θ

x3

FIG. 5. Illustration of the x1�-x2�-x3 coordinate system with the
semiaxes of the ellipsoid and the electric field.
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J3 =
W2

3R6 	3L2B2 − W2�L2 + B2�
 . �27�

From the matrix M1, we can obtain two deformation modes
preserving the volume and one orientation mode around the
x3 axis, which are mixed to construct normal modes. From
M2, on the other hand, two orientation modes can be derived
around the x1� and x2� axes. Especially at �̇=0, the eigenvalues
of M1 are −f1 /
 and 0. The modes corresponding to the
former eigenvalue are triply degenerated; two independent
deformation modes and one orientation mode around the x3
axis. The other mode corresponding to zero eigenvalue vio-
lates the constant volume condition and so it should be omit-
ted.

For �̇�0, it is readily seen that the matrixes �23� and �24�
become asymmetrical, implying that the eigenvalues can be
complex. For complex eigenvalues, the corresponding nor-
mal modes can oscillate. Therefore, it is thought that the
negative real part of the dispersion may come from the
modes with complex eigenvalues. On the other hand, the
complex eigenvalues may bring about damped oscillations in
time dependence. Actually, they were shown by numerical
calculations based on the Navier-Stokes equations �22�. In
our experiments, the complex eigenvalues of the matrix M1
may be responsible for the negative real part because applied
electric fields can excite only the modes related to M1 from
the symmetry. Let us calculate the eigenvalues in our experi-
ment. Since in our blend, the droplet size and the interfacial
tension were not measured, we determined f1 /
 in Eq. �23�
from the oscillation measurement without electric field after
applying a steady shear flow. Figure 6 shows the frequency
dispersions of the imaginary part of the complex viscosity at
several shear rates. A relaxation due to the interface of dis-
persed droplets is clearly seen at each shear rate �4�. As
mentioned above, the peak frequency should be equal to f1 /

in the MM model �8�. The relaxation frequency �rel= f1 /

thus obtained is shown in Fig. 7, which is seen to be propor-
tional to the shear rate �̇. This result indicates that the droplet
size R is inversely proportional to �̇ because �rel= f1 /


= f1� / ��2R� from Eq. �8�. Note that this is easily derived
from dimensional analysis R�� / ��2�̇�. For example, at �̇
=20 s−1, �rel= f1 /
 is about 2.5 rad s−1. From Eq. �16�, we
obtain the orientation angle � as 3.6° and, furthermore, from
Eqs. �17�–�19�, the aspect ratio L :B :W=1:0.40:0.53. It
should be noted that the angle and ratio are independent of
the shear rate because �rel��̇, i.e., �̇
 is constant in Eqs.
�16�–�19�. For �rel=2.5 rad s−1, the matrix M1 has eigenval-
ues; −2.0�13.9i rad s−1, −2.5 rad s−1. Note that −f1 /
 is
always one of the eigenvalues. The complex eigenvalues
may be responsible for our characteristic dispersions and the
imaginary part may correspond to the eigenfrequency of the
mode. However, the imaginary part of 13.9 rad s−1 is larger
than estimated from the experiment. The eigenfrequency
may be equal to twice the peak frequency in Fig. 3 because
the Maxwell stress acting on droplets is proportional to the
square of the applied electric field and so the stress should
oscillate at 2�. The eigenfrequency �2�peak, where �peak is
the peak frequency� is about 6 rad s−1 from Fig. 3, which is
considerably smaller than 13.9 rad s−1. The same results
were obtained for the other shear rates. The dependences of
the measured eigenfrequency 2�peak and the calculated one
�the imaginary part� �cal on the shear rate are shown in Fig.
7. The frequency 2�peak is proportional to the shear rate,
indicating that the droplet size should be inversely propor-
tional to the shear rate under ac electric fields as well as
under no field. The calculated eigenfrequencies are almost
twice as large as the measured ones for all the shear rates.

The discrepancy can be reduced by taking into account
the hydrodynamic effect and by taking a different choice of
f2. First, let us consider the former, which decreases the net
shear rate at a droplet. We estimated the effect adopting the
method used by Chen et al. �6� From the results obtained by
Frankel and Acrivos �23�, they calculated the velocity gradi-
ent around an isolated droplet subjected to a simple shear
flow by assuming that the droplet was not deformed and
estimated the shear rate around it, which is disturbed by the
existence of the droplet and strongly depends on the distance
from the droplet. From the volume fraction of our blend �
=1 /6, we obtain the mean nearest-neighbor distance between
droplets as lm=2.5R �24�, and then the shear rate change is
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FIG. 6. �Color online� Frequency dispersions of out-of-phase
viscosity for the LCP/DMS blend after applying preshears of 5, 10,
20, 40, and 60 s−1, respectively.

0

10

20

30

40

50

0 10 20 30 40 50 60 70

ωrel
2ωpeak
ωcal

ω
re
l,
2ω

pe
ak
,ω

ca
l
(ra
d
s-
1 )

γ (s-1).

FIG. 7. �Color online� Dependences of �rel, 2�peak, and �cal on
the shear rate. These are proportional to the shear rate.

RESPONSE OF SHEAR STRESS TO AC ELECTRIC … PHYSICAL REVIEW E 80, 061803 �2009�

061803-5



given as ��̇=−0.3�̇, using an equation derived by Chen et
al. �6� For example, when the applied shear rate is
20 rad s−1, the shear rate at a droplet may be 14 rad s−1. For
this shear rate, the eigenvalues become −2.1�9.7i, giving a
better agreement. Next, we discuss the choice of f2. Actually,
in the MM theory a modification of f2 was made to have
better results at high viscosity and high Capillary number.
Another choice of f2 is given as �7�

f2 =
5

2� + 3
+

3Ca
2

2 + 6Ca
2+�

1

1 + ��2 , �28�

where Ca is the Capillary number, � and � are small positive
numbers introduced to preserve the �−1 and the affine motion
limit, respectively. When �=�=0, we have the maximum of
f2. In our experiments, the Capillary number is obtained us-
ing the relation Ca= �f1 /
�−1f1�̇, where f1 /
=2.5 s−1, f1
=0.322 from Eq. �11�, and �̇=20 s−1, giving Ca=2.58.
Substitution of this value into Eq. �28� yields f2=1.2.
When we use this value instead of the one �0.725� obtained
from Eq. �11�, we could obtain no positive real value for
Eq. �17�. However, better results were obtained using values
larger than 0.725. As an example, for f2=0.9 we have a
positive real value for Eq. �17� and eigenvalues of
−1.8�6.3i rad s−1, indicating �rel=6.3 rad s−1, which is in
good agreement with the experimental value 6 rad s−1. The
value of f2 should be determined by measuring the semiaxes
length. At present, unfortunately, it is difficult because our
blend is turbid. The direct observation is our future plan.

At the end of this paper, we calculate the stress response
to ac electric fields in order to compare the experimental
result with the theory. We add a term to Eq. �7� as a driving
force to deform a droplet

c�EE − h�S,E�I� , �29�

with

h�S,E� = �
i,j,k,l,m,n

�ijk�lmnEiElSjmSkn/2I2�S� , �30�

where h�S ,E� is introduced to preserve the droplet volume,
�ijk is the permutation tensor, and c is a constant. Adding this
term to Eq. �7�, we obtain the deformation parameter D
= �L−B� / �L+B� without shear flow for a small dc electric
field E as

D =
c

4
R2f1
E2. �31�

The constant c should be determined so that the above equa-
tion coincides with the results of theories, giving the droplet
deformation under electric fields. For example, for perfect
dielectrics, i.e., 	1=	2=0 �13,25�, c is given as

c =
9f1�2��1 − �2�2R2

4�2��1 + 2�2�2 . �32�

From Eqs. �7� and �30�, we can calculate the response of
deformation when subjected to ac electric fields and, further-
more, the corresponding shear stress tensor by utilizing the
formula �8�

�s =
2f2K

I2
�I1S − S · S −

2

3
I2I� , �33�

with

K =
6�

5R

�� + 1��2� + 3��
5�� + 1� − �5� + 2��

, �34�

where � is the volume fraction of droplets. Figure 8 shows
the frequency dispersion of �12

s for two cases of parameters
�a� f1 /
=2.5 rad s−1, f2=0.725, �̇=20 s−1, and �b� f1 /

=2.5 rad s−1, f2=0.9, �̇=14 s−1, where we calculated the
shear stress for the parallel plates corresponding to the ex-
perimental result by using the following equation:

�R = 4�̇R
−3�

0

�̇R

�s��̇��̇2d�̇ , �35�

where �̇R is the shear rate at the edge of the rotating disk and
�R is the shear stress calculated by assuming that the blend is
Newtonian. Note that the scale of the ordinate is arbitrary
because R and � were not independently determined in our
experiments. The negative real part is successfully repro-
duced both in the cases. On the other hand, the peak frequen-
cies of the imaginary part are 6 and 3 rad s−1 for the cases
�a� and �b�, respectively. The latter case, in which the hydro-
dynamic effect was taken into account and another choice of
f2=0.9 was adopted, coincides well with the experiment.
Comparing the experiment �Fig. 3� and calculated results
�Fig. 8� in more detail, it is noticed that there is another
lower mode in the experiment. This mode may be ascribed to
the translational motion of droplets to form chains along the
applied electric field.

IV. SUMMARY

We measured the response of shear stress to ac electric
fields to investigate the dynamics of a droplet-dispersed
phase under steady shear flow. A scaling property derived
from dimensional analysis was confirmed to almost hold in
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1
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a Re
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σ R
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.u
.)
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FIG. 8. �Color online� Frequency dispersion of �R at �a� f1 /

=2.5 rad s−1, f2=0.725, �̇=20 s−1, and �b� f1 /
=2.5 rad s−1, f2

=0.9, �̇=14 s−1. The shear stress was calculated for the parallel
plates corresponding to the experimental results by using Eq. �35�.

NA et al. PHYSICAL REVIEW E 80, 061803 �2009�

061803-6



the experiment. It was found that the real part of the response
becomes negative under steady shear flow at large shear
rates, which may be a remarkable feature characteristic to
our nonequilibrium steady system. The negative real part
was clarified to be due to the normal modes with complex
eigenvalues in the MM model. Also for the superimposed
storage modulus measured by Chen et al. �6�, it is easily
shown that it becomes negative by calculations using com-
plex eigenvalues. The MM model was modified to calculate
the frequency dependence of the stress and a good agreement
was obtained with the experiment except at low frequencies.

ACKNOWLEDGMENTS

We thank Professor T. Ohta and Dr. T Sakaue for useful
discussions. This work was partially supported by Grant-in-
Aid for Scientific Research �Priority Area “Soft Matter Phys-
ics” �Contract No. 463�, C �Contract No. 19540326�, and
Wakate B �Contract No. 19740255�� from the Ministry of
Education, Culture, Sports, Science and Technology of Ja-
pan.

APPENDIX

The electric force added to Eq. �7� should be a second-
rank tensor as well as S. The lowest-order term of the force
with respect to E may be written in the simplest form as Eq.
�29�. h�S ,E� can be obtained from the constant volume con-
dition as follows. We consider the equation of motion, in-
cluding Eq. �29�. When a static electric field is applied along

the x1 axis without flow, the equation for each of the three
eigenvalues Si of S becomes

dS1

dt
= −

f1



�S1 − g�S�� + c�E1

2 − h�S,E�� ,

dS2

dt
= −

f1



�S2 − g�S�� − ch�S,E� ,

dS3

dt
= −

f1



�S3 − g�S�� − ch�S,E� , �A1�

where we have assumed that the eigenvector corresponding
to the eigenvalue S1 is parallel to the field direction. Multi-
plying the first, second and third equations by S2S3, S1S3, and
S1S2, respectively, and summing up them, we obtain

d

dt
�S1S2S3� = −

f1



�3S1S2S3 − �S1 + S2 + S3�g�S�� + c�E1

2S2S3

− �S1S2 + S2S3 + S3S1�h�S,E�� . �A2�

The left-hand side is zero because S1S2S3 is the square of the
volume, and the first term of the right-hand side also van-
ishes from Eq. �13�. Thus, h�S ,E� is given as

h�S,E� =
E1

2S2S3

S1S2 + S2S3 + S3S1
. �A3�

This implies Eq. �30�, which was generally confirmed by the
algebraic computation.
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